Concerning the matching of magnetic susceptibility differences for the compensation of background gradients in anisotropic diffusion fibre phantoms
نویسندگان
چکیده
Artificial, anisotropic fibre phantoms are nowadays increasingly used in the field of diffusion-weighted MRI. Such phantoms represent useful tools for, among others, the calibration of pulse sequences and validation of diffusion models since they can mimic well-known structural features of brain tissue on the one hand, but exhibit a reduced complexity, on the other. Among all materials, polyethylene fibres have been widely used due to their excellent properties regarding the restriction of water diffusion and surface relaxation properties. Yet the magnetic susceptibility of polyethylene can be distinctly lower than that of distilled water. This difference produces strong microscopic, background field gradients in the vicinity of fibre bundles which are not parallel to the static magnetic field. This, in turn, modulates the MRI signal behaviour. In the present work we investigate an approach to reduce the susceptibility-induced background gradients via reducing the heterogeneity in the internal magnetic susceptibility. An aqueous solution of magnesium chloride hexahydrate (MgCl2·6H2O) is used for this purpose. Its performance is demonstrated in dedicated anisotropic fibre phantoms with different geometrical configurations.
منابع مشابه
Design of Anisotropic Diffusion Hardware Fiber Phantoms
A gold standard for the validation of diffusion weighted magnetic resonance imaging (DW-MRI) in brain white matter (WM) is essential for clinical purposes but still not available. Synthetic anisotropic fiber bundles are proposed as phantoms for the validation of DW-MRI because of their well-known structure, their long preservability and the possibility to create complex geometries such as curve...
متن کاملDiffusion Gradient Calibration Influences the Accuracy of Fibre Orientation Density Function Estimation: Validation by Efficiency Measure
Introduction. Diffusion-weighted (DW) MRI provides important information regarding the arrangement of white matter fibres. However, imperfections in the DW gradients may cause errors in the estimation of diffusion parameters. The sources of the gradient errors are various and may arise from long-term eddy currents, background gradients, imaging gradients, and spatial non-linearity and non-unifo...
متن کاملDeformation Characteristics of Composite Structures
The composites provide design flexibility because many of them can be moulded into complex shapes. The carbon fibre-reinforced epoxy composites exhibit excellent fatigue tolerance and high specific strength and stiffness which have led to numerous advanced applications ranging from the military and civil aircraft structures to the consumer products. However, the modelling of the beams undergoin...
متن کاملFlexural and Impact Properties of Stainless Steel based Glass Fibre Reinforced Fibre Metal Laminate under Hygrothermal Conditioning
Fibre metal laminates (FMLs) have appeared as the most suitable materials for shipbuilding, aeronautical and aerospace applications due to their superior mechanical properties over traditional materials. In this paper, degradation in flexural and impact properties of glass fibre/epoxy composite (GF/E composite) and stainless steel glass fibre/epoxy fibre metal laminate (SS FML) due to hygrother...
متن کاملOvercoming apparent susceptibility-induced anisotropy (aSIA) by bipolar double-pulsed-field-gradient NMR.
Double-Pulsed-Field-Gradient (d-PFG) MR is emerging as a powerful new means for obtaining unique microstructural information in opaque porous systems that cannot be obtained by conventional single-PFG (s-PFG) methods. The angular d-PFG MR methodology is particularly important since it can utilize the effects of microscopic anisotropy (μA) and compartment shape anisotropy (csA) in the E(ψ) profi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2017